Top Summary and Plans

Cecilia Gerber, University of Illinois at Chicago

Reinhard Schwienhorst, Michigan State University

Summary

- Focus on Single Top
 - Single Top Production (Steve Ellis)
 - Single Top at the Tevatron (Gordon Watts)
 - Discussion

Tevatron Experience might be relevant to Higgs searches during the early days of the LHC

Electroweak top production at the Tevatron

- Leads to measurement of V_{tb}
- Background to other searches (Higgs, etc.)
- Also: Potential for new physics discovery
 - New bosons, extra quark generations or couplings

Experimental status of the search for single top production at the Tevatron

Signature: Lepton + Missing E_{τ} + Jets

Harder Signal To Find than tt

DØ and CDF have set limits on 95% C.L. limits Observed (Expected)

single top production using $\sim 160 \text{pb}^{-1}$ of Run II data.

Channel	CDF (pb)	DØ (pb)
s+t	<17.8 (13.6)	<23 (20)
†	<10.1 (11.2)	<25 (23)
S	<13.6 (12.1)	<19 (16)

From Fermilab
TeV4LHC summary
talk

Experimental Reality

- Current analyses would need several fb⁻¹ for observation
 - Particle ID, b-tagging not as efficient as predicted
 - Large systematic uncertainties from background modelling and detector understanding
 - Analyses methods need optimization to make and observation soon
- Work in progress
 - Ever improving particle ID and understanding of detector effects
 - Accurate models for signal and background benefits from recent NLO calculations
 - Working on multivariate analysis techniques (NN, Matrix Element, ...)
- Need to work with theorists to identify variables that give good signal-background separation - not just at parton level, but for experimental observables.

More Realistic rivers.

Define Event Samples for Counting hep phony riment

Madgraph + Pythia + PGS Detector Steve Ellis

Where possible; For 3 fb⁻¹, sum over μ^{\pm} and e^{\pm} (top and anti-top)

PGS jets, $R_{cone} = 0.4$; $\Delta R(lepton, jet) > 0.4$

"m_{ton}" = invariant mass of (blv) Advanced Cuts:

> $H_T = P_{Tlepton} + MET + \Sigma_{all jets} (jet P_T)$ (all jets $P_T > 20 \text{ GeV}$, |n| < 3.5)

"real b" $\sim 0.5 \tanh(P_T/36 \text{ GeV}) [P_T = \text{jet } P_T]$ **b-Tags**:

"real c" $\sim 0.15 \tanh(PT/42 \text{ GeV})$

 $mistag \sim 0.01 tanh(PT/80 GeV)$

More realistic

b-tagging

S. D. Ellis TeV4LHC BNL 2005

Result for 3 sets of cuts

Ev	ents in 3 fb ⁻¹		F.	Som Steve Ellis
Channels	Basic	Intermed	Hard	Sy. This
t-channel	298	67	30	>10%
s-channel	145	27	13	>10%
W+jj	6816	550	152	>10%
<u>††</u>	2623	140	57	>10%
Sig/Bkg	1/21	1/7	1/5 🔨	

Conclude that Life is Hard!!!

Simple cuts are not enough, also need to use shapes

Shape variables using pp CP symmetry

The W+jets Problem

Might get sufficient S-B separation in 3fb⁻¹

 But need to understand background systematics

- W+jets flavor composition

- Different flavors
 can have different shapes
- Understand both b and c contributions

Summary & Plans

- Important to have realistic phenomenology
- Important to understand W+jets contribution
 - Experiment: study flavor fractions in data
 - Project: flavor fraction in b-tagged sample using jet mass
 - Phenomenology: study shape variables for different flavors
 - Compare LO to NLO

